
[INTERNATIONAL JOURNAL FOR RESEARCH &

DEVELOPMENT IN TECHNOLOGY]
Volume-4,Issue-2, Aug - 2015

ISSN (O) :- 2349-3585

www.ijrdt.org | copyright © 2014, All Rights Reserved. 36

HARVESTING 2D PROCESSING IN SIGNAL

PROCESSING APPLICATIONS
A Chempak Kumar

1
,V R Sudheer

2

1
Department of electronics and communication,College of engineering Thalassery

 2
Department of electronics and communication,College of engineering Perumon

Abstract— Many advanced features and methods have

been proposed and implemented as a result of the immense

research activities going on to quench the thirst for the ever

increasing demand for signal processing capabilities. But

all the algorithms and ideas, how much intelligent and

unique they are, do face the severe limitation posed by the

available processors. Further in the industrial and

commercial arena cost, power consumption, processing time,

performance competitiveness, reliability, feasibility,

adaptability, compactness etc pose the major challenges. The

concept of two dimensional processing in matrix form,

offering every option and flexibility to utilize the matrix

properties, do promise immense options not only in signal

processing but also in other related fields. The Matrix

Processor, (MxP™) developed at G4Matrix Tech. Inc. Corp.

based on the above concept stands unique to revolutionize

the signal processing arena. The processor, developed as a

coprocessor to work with almost all the existing processors,

handle data by treating it as a data set that could be

configured as matrices and vectors of very flexible but

mathematically structured format to operate on matrices as

operands. This provides efficient signal processing

algorithms at much reduced machine cycles, power and cost.

Here we took an auto-correlation block of G.729 speech

standard as a benchmark for MxP™, as a coprocessor for

PowerPC440.

Introduction

Recent developments in low-power and high-performance

VLSI architectures along with the emergence of several

compatibility standards created multiple new signal and

multimedia coding applications [1-5]. Such signal processing

applications are demanding in terms of computation, memory

and power consumption. Examination of the ISO coding

standards reveals that the auto-correlation [6], the wavelet

transforms [7] and motion estimation/compensation functions

[1] are key in several video and audio compression algorithms.

Most processor architectures are sequential in nature and hence

accommodate these algorithms by processing the data at high

clock rates. Attempts to address high computational

requirements resulted in multicore designs [8], and

architectures with multimedia extended instructions (e.g., the

Intel MMXTM). On the other hand, recently developed DSP

chips [9-11] employ large instruction words (e.g., the TI

TMS320c64xTM) that enable execution of multiple

instructions per cycle.

In this paper, we describe and analyze an alternative

architecture paradigm that is based on matrix-oriented

computations. The matrix processor, MxP™ [12-13], a

coprocessor for most conventional RISC processors developed

by G4Matrix Tech. Inc. Corp., performs signal processing

functions by exploiting matrix structures embedded in the

algorithms. Programming the MxP architecture involves

configuring and processing operations in vector or matrix form

much like one would do with MATLAB™.

The current version of the MxP can perform a 16 element

(4X4, 1X16,..) matrix operation in a single cycle. This single-

cycle 16 element capability may be exploited either to

accommodate highly demanding (high-MIPS) algorithms or to

execute algorithms with modest processing requirements at a

lower power-aware clock frequency. Our comparative

Volume-4,Issue-2, Aug-2015

ISSN (O) :- 2349-3585
 Paper Title:- HARVESTING 2D PROCESSING IN SIGNAL PROCESSING APPLICATIONS

www.ijrdt.org | copyright © 2014, All Rights Reserved. (37)

simulations of the MxP show that its matrix computation

capability results in a significant reduction in the machine cycle

count, the number of instructions and hence the program

memory requirements relative to other DSP architectures. An

auto-correlation block of G.729 speech standard has been taken

as a benchmark for evaluating the performance of MxP™.

2.THE MATRIX PROCESSING ARCHITECTURE

The current version of MxP was designed and tested as a

coprocessor to the 32-bit PowerPC440 core, Figure 1

Figure 1: The MxP as a coprocessor to the PowerPC core.

The MxP is capable of complementing other CPUs, such as

the PowerPC™ , by supporting matrix instructions and matrix

data types. The main CPU controls the MxP coprocessor

through the co-processor bus. The instructions are visible to

all processors on the coprocessor bus. In the case we examined

using the PowerPC processor, instructions are fetched by the

PowerPC, and instruction allocation/execution is based on a

conditional code status. The MxP also interprets instructions

simultaneously with the PowerPC and checks if the instruction

is valid. In that case, a handshake occurs and the MxP accepts

and executes the instruction. The MxP has 32registers (MR0 -

MR31) that are 64 bit wide. The MxP register model is shown

in Figure 2

MC

MR30_U MR30_L

MR29_U MR29_L

MR28_U MR28_L

……….. ………..

……….. ………..

……….. ………..

MR2_U MR2_L

MR1_U MR1_L

MR0_U MR0_L

Figure 2: The MxP register model.

The Matrix Configuration (MC) Register (MR31) is a special

purpose register used to configure and control the coprocessor.

MC register can be read from and written to using a special set

of transfer instructions. The MxP operates with matrices as the

basic data type, with each of the matrix elements identified

from the packed data types. Matrix data types can be two-

dimensional matrices of arbitrary size, limited only by the

span of the register file. The elements of the matrices can be

signed or unsigned byte, half-word, word. The packing of the

data in the registers are always aligned to a power of 2,

starting from bit 0 of each of the 64 bit registers. Thus, each of

the 32 registers can contain 8, 4, or 2 of B (Byte), H (Half-

Word), or W (Word) data elements respectively. Data packing

is performed in a manner that avoids having data elements that

would span the register boundaries.

The MxP introduces a novel methodology for handling data

that could be configured as matrix or vector thereby providing

a compact and mathematically structured format. The MxP

coprocessor has a load/store architecture, in the sense that all

the data processing (arithmetic and logical) operations are

done on the data elements stored in the internal registers.

There are separate instructions for transferring data between

external memory and MxP registers, and also between ARM

registers and MxP registers. Note that even for the load/store

 Matrix Config

 MR30

 MR29

 MR28

 MR2

 MR1

 MR0

Volume-4,Issue-2, Aug-2015

ISSN (O) :- 2349-3585
 Paper Title:- HARVESTING 2D PROCESSING IN SIGNAL PROCESSING APPLICATIONS

www.ijrdt.org | copyright © 2014, All Rights Reserved. (38)

data exchange the source and target are structured as matrices,

thus providing more flexibility to handle (e.g. pack/unpack)

complex numbers and various other data types. The MxP has

three-operands Mx, My, and Md. The source matrix My

operates on the source matrix Mx and the result is stored in the

destination matrix, Md. Source matrices Mx and My are

formed by an ordered arrangement of the packed data residing

in the MxP register set.

3. SIGNAL PROCESSING ON THE MxP

In order to evaluate the performance of MxP, we categorize

algorithms into two types, i.e., those that can be converted into

„fast‟ algorithms, such as, the Fourier and cosine transforms.

and those that are not easily parallelizable, such as matrix

multiplications used in color transformation, filtering,

decimation, interpolation etc. Operations such as the DCT are

highly parallelizable due to the cyclic nature of the cosine

basis functions. This degree of parallelism can be exploited by

processors that support either data level parallelism or

instruction level parallelism. The following section describes

the performance of the MxP for typical signal processing

operations.

3.1. Matrix multiplication with the MxP

Matrix multiplications take place in graphics applications,

color space mapping, etc. The current version of the MxP

architecture supports single-cycle 4x4 multiplications.

Additional cycles are needed to prepare, load, and store the

data resulting in a total of 33 cycles for half word result and 43

cycles for a full word result. An 8x8 matrix half word

multiplication can be performed with eight 4x4 multiplications

and four additions. The data is loaded such that maximum

reuse is possible without reloading.

3.2 Autocorrelation

 A signal correlated with itself. It is useful because

the Fourier transform of the autocorrelation is the power

spectrum of the original signal. This is an optimal way to

detect a known waveform in a signal.

Autocorrelation requires that several initial assumptions be

made about the set or sequence of speech samples, {yn }, in

the current segment. First, it requires that {yn } be stationary

and second, it requires that the {yn } sequence is zero outside

of the current segment. In autocorrelation, each E[yn-i yn-j] is

converted into an autocorrelation function of the form Ryy (| i-

j |). The estimation of an autocorrelation function Ryy (k) can

be expressed as:

Using Ryy (k), the M equations that were acquired from

taking the derivative of the mean Squared error can be written

in matrix form RA = P where A contains the filter coefficients.

3.2.1 Autocorrelation algorithm in MxP

 The autocorrelation implementation on MxP involves only

4x4 matrix multiplication and element matrix

multiplications. The rest of the cycles are for data load/

store.

 Initialization of base register.

 Configure MC for matrix loading.

 Load 16x1 input matrix from memory.

 Matrix element multiplication of the above matrix

with

 the same is done.

 Configure MC for shifter matrix.

 Load 16x1 shifter matrix memory.

 Matrix element multiplication of the resultant of

step4 and the above matrix is done.

Volume-4,Issue-2, Aug-2015

ISSN (O) :- 2349-3585
 Paper Title:- HARVESTING 2D PROCESSING IN SIGNAL PROCESSING APPLICATIONS

www.ijrdt.org | copyright © 2014, All Rights Reserved. (39)

 Configure MC for matrix loading.

 Load 1x16 unity matrix from memory.

 Matrix multiplication of resultant matrix of step 7

and the above matrix is done.

 Store the output matrix in a 1x1 matrix.

3.3 Radix-4 Fast Fourier Transform (FFT)

When the number of data points N in the DFT is a power of 4

(i.e., N = 4v), we can, of course, always use a radix-2

algorithm for the computation. However, for this case, it is

more efficient computationally to employ a radix-r FFT

algorithm. Let us begin by describing a radix-4 decimation-in-

time FFT algorithm briefly. We split or decimate the N-point

input sequence into four subsequences, x(4n), x(4n+1),

x(4n+2), x(4n+3), n = 0, 1, ... , N/4-1.

Thus the four N/4-point DFTs F(l, q)obtained from the above

equation are combined to yield the N-point DFT.

The expression for combining the N/4-point DFTs defines a

radix-4 decimation-in-time butterfly, which can be expressed

in matrix form as

The radix-4 butterfly is depicted in Figure 3 and in a more

compact form in Figure (b). Note that each butterfly involves

three complex multiplications, since WN0 = 1, and 12

complex additions.

Figure 3: Radix-4 butterfly

By performing the additions in two steps, it is possible to

reduce the number of additions per butterfly from 12 to 8. This

can be accomplished by expressing the matrix of the linear

transformation mentioned previously as a product of two

matrices as follows

3.3.1 256-point Radix-4 (FFT) algorithm in MxP

Due to the 4x4 matrix multiplication capability of MxP, we

chose the decimation-in-frequency (DIF) FFT algorithm. The

FFT implementation on MxP involves one 4x4 matrix

multiplication and one complex multiplication in first three

stages and a single 4x4 matrix multiplication in the fourth

stage butterfly. The rest of the cycles are for data load/ store.

Once per FFT:

 Load 4x4 transformatiom matrix coefficients (16 hwords)

 Load four matrix configuration values (4 dwords)

Same for first three stages: once per Butterfly:

Volume-4,Issue-2, Aug-2015

ISSN (O) :- 2349-3585
 Paper Title:- HARVESTING 2D PROCESSING IN SIGNAL PROCESSING APPLICATIONS

www.ijrdt.org | copyright © 2014, All Rights Reserved. (40)

 Load four complex inputs - real and imaginary part (8

hwords)

 Perform complex transformation (4x4 * 4x2)

 Load 1x4 complex twiddle factors (8 hwords) and 1x4

negative

 of the imaginary part (4 hwords)

 Perform multiplication with twiddle factors

 Store four complex outputs - real and imaginary (8

hwords)

Once per Butterfly:

 Load four complex inputs - real and imaginary part (8

hwords)

 Perform complex transformation (4x4 * 4x2)

 Store four complex outputs - real and imaginary (8

hwords)

4. PERFORMANCE EVALUATION OF MxP

In this section, we provide the results of performance analysis

of MxP for 8x8 DCT matrix multiplications in terms of

machine cycles. We also provide performance comparison

results of MxP with other widely used DSPs from Texas

Instruments comparisons in Figures. 4 and 5. Table 1 gives the

MxP cycle count with other widely used DSPs such as the

Texas Instruments (TI) TMS320c55x and TMS320c64x

Process MxP TMS320c

64

TMS320c

55

8x8 Multiply 146 283

464

8x8 DCT 125 126 238

Table 1: Machine cycles

From these examples, it is evident that in terms of machine

cycles the MxP performs quite well relative to the

TMS320c55x. For matrix multiplication and filtering, the MxP

cycle count is lower than that of TMS320c64x. On the other

hand for the DIF DCT, both the MxP and the TMS320c64x

have comparable performance. Table 2 and Figure 5 shows

code size comparisons for the DCT and the MAD

computations. It can be seen that the MxP performs these tasks

with reduced code size. Reduced code size results in

significant reduction of on chip program memory

Process MxP TMS320c

64

TMS320c

55

8x8 Multiply 84 416 215

8x8 DCT 88 976 480

Table 2: Code size in bytes

Figure 4 Machine cycle comparison

Figure 5: Code size comparison

CONCLUSION

In this paper, we presented and evaluated the MxP

architecture. Comparative results were given for select signal

and video processing applications. In particular, the MxP

performance was compared against the widely used TI DSPs,

namely the TMS320c64x and the TMS320c55x. Comparison

Volume-4,Issue-2, Aug-2015

ISSN (O) :- 2349-3585
 Paper Title:- HARVESTING 2D PROCESSING IN SIGNAL PROCESSING APPLICATIONS

www.ijrdt.org | copyright © 2014, All Rights Reserved. (41)

results in terms of machine cycles and code size favored the

MxP™. The code size for the MxP proved to be more compact

than the other DSPs resulting in reduced instruction fetches.

The reduction in instruction fetches and the lower overall

clock can be exploited for low power realizations on the MxP.

REFERENCES

[1] M. Ghanbari, Standard codecs: Image compression to

advanced video coding, The IEE Press, London, 2003.

[2] M. Vrhel, E. Saber, H. Trussell, “Color Image Generation

& Display Technologies”, IEEE SP Mag., Jan 2005.

[3] A.S. Spanias, "Speech Coding: A Tutorial Review," Proc.

IEEE, Vol. 82, No. 10, pp. 1441-1582, Oct. 1994.

[4] T. Painter and A. Spanias, “Perceptual Coding of Digital

Audio,” Proc. IEEE, pp.451-513, Vol. 88, No.4, Apr 2000.

[5] A. Spanias, T. Painter, V. Atti, Audio Signal Processing

and Coding, Wiley, ISBN:0-471-79147-4, March 2007.

[6] 2.ITU-T Draft Recommendation G.729, “Coding of speech

at 8Kbps using the Conjugate Structure Algebraic Code

Excited Linear – Prediction (CS-ACELP)”.

 [7] R.M. Rao and A.S. Bopardikar, Wavelet Transforms:

Introduction to Theory and Applications, Addison-Wesley

Longman, Reading, MA, 1998.

[8] A. Spanias, M. Deisher, P. Loizou+, G. Lim+, B. Mears,

"A New Highly Integrated Architecture for Speech Processing

and

Communication Applications," ITJ, pp. 41-56, Spring 1994.

[9] SPRU422H, TMS320c55x DSP Programmer‟s Reference,

October 2004.

[10] SPRU565H, TMS320c64x DSP Programmer‟s

Reference, October 2003.

[11] SPRU037C, TMS320c55x Image, Video processing

[12] MxP Architecture, Rev 0.1.0, Doc. No. GS\

Programmer‟s Reference, January 2004. EN\PR\

DE\2004\020, Aug. 2004, G4 Matrix Tech. Inc. (formerly

GemTech Solutions (P)), Thiruvananthapuram, India.

[13] Apparatus and method for Matrix Data Processing,

G.Nair, US Patent No. 6,944,747, Sept. 13, 2005

