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Abstract— Many  advanced  features and  methods have  

been proposed and implemented  as  a result of the immense 

research activities  going on  to quench the thirst for the ever 

increasing  demand for  signal processing capabilities. But 

all the algorithms and ideas, how much intelligent and 

unique they are, do face the severe limitation posed by the 

available processors. Further in the industrial and 

commercial arena cost, power consumption, processing time, 

performance competitiveness, reliability, feasibility, 

adaptability, compactness etc pose the major challenges. The 

concept of two dimensional processing   in matrix  form, 

offering every option and flexibility to utilize the matrix 

properties, do promise immense options not only in signal 

processing  but also in other related fields. The Matrix 

Processor, (MxP™) developed at G4Matrix Tech. Inc. Corp. 

based on the above concept stands unique to revolutionize 

the signal processing arena. The processor, developed as a 

coprocessor to work with almost all the existing processors, 

handle data by treating it as a data set that could be 

configured as matrices and vectors of very flexible but 

mathematically structured format to operate on matrices as 

operands. This provides efficient signal processing 

algorithms at much reduced machine cycles, power and cost. 

Here we took an auto-correlation block of G.729 speech 

standard as a benchmark for MxP™, as a coprocessor for 

PowerPC440. 

Introduction 

Recent developments in low-power and high-performance 

VLSI architectures along with the emergence of several 

compatibility standards created multiple new signal and  

 

multimedia coding applications [1-5]. Such signal processing 

applications are demanding in terms of computation, memory 

and power consumption. Examination of the ISO coding 

standards reveals that the auto-correlation [6], the wavelet 

transforms [7]  and motion estimation/compensation functions 

[1] are key in several video and audio compression algorithms. 

Most processor architectures are sequential in nature and hence 

accommodate these algorithms by processing the data at high 

clock rates. Attempts to address high computational 

requirements resulted in multicore designs [8], and 

architectures with multimedia extended instructions (e.g., the 

Intel MMXTM). On the other hand, recently developed DSP 

chips [9-11] employ large instruction words (e.g., the TI 

TMS320c64xTM) that enable execution of multiple 

instructions per cycle.  

In this paper, we describe and analyze an alternative 

architecture paradigm that is based on matrix-oriented 

computations. The matrix processor, MxP™ [12-13], a 

coprocessor for most conventional RISC processors developed 

by G4Matrix Tech. Inc. Corp., performs signal processing 

functions by exploiting matrix structures embedded in the 

algorithms. Programming the MxP architecture involves 

configuring and processing operations in vector or matrix form 

much like one would do with MATLAB™.  

The current version of the MxP can perform a 16 element 

(4X4, 1X16,..) matrix operation in a single cycle. This single-

cycle 16 element capability may be exploited either to 

accommodate highly demanding (high-MIPS) algorithms or to 

execute algorithms with modest processing requirements at a 

lower power-aware clock frequency. Our comparative 
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simulations of the MxP show that its matrix computation 

capability results in a significant reduction in the machine cycle 

count, the number of instructions and hence the program 

memory requirements relative to other DSP architectures. An 

auto-correlation block of G.729 speech standard has been taken 

as a benchmark for evaluating the performance of MxP™. 

2.THE MATRIX PROCESSING ARCHITECTURE 

 

The current version of MxP was designed and tested as a 

coprocessor to the 32-bit PowerPC440 core, Figure 1 

 

 

Figure 1: The MxP as a coprocessor to the PowerPC core. 

 

The MxP is capable of complementing other CPUs, such as 

the PowerPC™ , by supporting matrix instructions and matrix 

data types. The main CPU controls the MxP coprocessor 

through the co-processor bus. The instructions are visible to 

all processors on the coprocessor bus. In the case we examined 

using the PowerPC processor, instructions are fetched  by the 

PowerPC, and instruction allocation/execution is based on a 

conditional code status. The MxP also interprets instructions 

simultaneously with the PowerPC and checks if the instruction 

is valid. In that case, a handshake occurs and the MxP accepts 

and executes the instruction. The MxP has 32registers (MR0 - 

MR31) that are 64 bit wide. The MxP register model is shown 

in Figure 2  
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Figure 2: The MxP register model. 

 

The Matrix Configuration (MC) Register (MR31) is a special 

purpose register used to configure and control the coprocessor. 

MC register can be read from and written to using a special set 

of transfer instructions. The MxP operates with matrices as the 

basic data type, with each of the matrix elements identified 

from the packed data types. Matrix data types can be two-

dimensional matrices of arbitrary size, limited only by the 

span of the register file. The elements of the matrices can be 

signed or unsigned byte, half-word, word. The packing of the 

data in the registers are always aligned to a power of 2, 

starting from bit 0 of each of the 64 bit registers. Thus, each of 

the 32 registers can contain 8, 4, or 2 of B (Byte), H (Half-

Word), or W (Word) data elements respectively. Data packing 

is performed in a manner that avoids having data elements that 

would span the register boundaries. 

The MxP introduces a novel methodology for handling data 

that could be configured as matrix or vector thereby providing 

a compact and mathematically structured format. The MxP 

coprocessor has a load/store architecture, in the sense that all 

the data processing (arithmetic and logical) operations are 

done on the data elements stored in the internal registers. 

There are separate instructions for transferring data between 

external memory and MxP registers, and also between ARM 

registers and MxP registers. Note that even for the load/store 
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data exchange the source and target are structured as matrices, 

thus providing more flexibility to handle (e.g. pack/unpack) 

complex numbers and various other data types. The MxP has 

three-operands Mx, My, and Md. The source matrix My 

operates on the source matrix Mx and the result is stored in the 

destination matrix, Md. Source matrices Mx and My are 

formed by an ordered arrangement of the packed data residing 

in the MxP register set. 

3.  SIGNAL PROCESSING ON THE MxP 

In order to evaluate the performance of MxP, we categorize 

algorithms into two types, i.e., those that can be converted into 

„fast‟ algorithms, such as, the Fourier and cosine transforms. 

and those that are not easily parallelizable, such as matrix 

multiplications used in color transformation, filtering, 

decimation, interpolation etc. Operations such as the DCT are 

highly parallelizable due to the cyclic nature of the cosine 

basis functions. This degree of parallelism can be exploited by 

processors that support either data level parallelism or 

instruction level parallelism. The following section describes 

the performance of the MxP for typical signal processing 

operations. 

3.1.  Matrix multiplication with the MxP 

Matrix multiplications take place in graphics applications, 

color space mapping, etc. The current version of the MxP 

architecture supports single-cycle 4x4 multiplications.  

Additional cycles are needed to prepare, load, and store the 

data resulting in a total of 33 cycles for half word result and 43 

cycles for a full word result. An 8x8 matrix half word 

multiplication can be performed with eight 4x4 multiplications 

and four additions. The data is loaded such that maximum 

reuse is possible without reloading.  

3.2 Autocorrelation 

                  A signal correlated with itself. It is  useful because 

the Fourier transform of the autocorrelation is the power 

spectrum of the original signal. This is an optimal way to 

detect a known waveform in a signal.  

Autocorrelation requires that several initial assumptions be 

made about the set or sequence of speech samples, {yn }, in 

the current segment. First, it requires that {yn } be stationary 

and second, it requires that the {yn } sequence is zero outside 

of the current segment. In autocorrelation, each E[yn-i yn-j ] is 

converted into an autocorrelation function of the form Ryy (| i-

j |). The estimation of an autocorrelation function Ryy (k) can 

be expressed as: 

 

Using Ryy (k), the M equations that were acquired from 

taking the derivative of the mean Squared error can be written 

in matrix form RA = P where A contains the filter coefficients. 

 

 

3.2.1  Autocorrelation algorithm in MxP 

 The autocorrelation implementation on MxP involves only 

4x4 matrix multiplication and element matrix 

multiplications. The rest of the cycles are for data load/ 

store. 

 

 Initialization of base register. 

 Configure MC for matrix loading. 

 Load 16x1 input matrix from memory. 

 Matrix element multiplication of the above matrix 

with  

 the same is done. 

 Configure MC for shifter matrix. 

 Load 16x1 shifter matrix memory.  

 Matrix element multiplication of the resultant of 

step4 and the above matrix is done. 
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 Configure MC for matrix loading. 

 Load 1x16 unity matrix from memory. 

   Matrix multiplication of resultant matrix of step 7 

and the above matrix is done. 

 Store the output matrix in a 1x1 matrix. 

  

3.3 Radix-4 Fast Fourier Transform (FFT) 

When the number of data points N in the DFT is a power of 4 

(i.e., N = 4v), we can, of course, always use a radix-2 

algorithm for the computation. However, for this case, it is 

more efficient computationally to employ a radix-r FFT 

algorithm. Let us begin by describing a radix-4 decimation-in-

time FFT algorithm briefly. We split or decimate the N-point 

input sequence into four subsequences, x(4n), x(4n+1), 

x(4n+2), x(4n+3), n = 0, 1, ... , N/4-1. 

Thus the four N/4-point DFTs F(l, q)obtained from the above 

equation are combined to yield the N-point DFT.  

 

 

The expression for combining the N/4-point DFTs defines a 

radix-4 decimation-in-time butterfly, which can be expressed 

in matrix form as 

 

 

 

The radix-4 butterfly is depicted in Figure 3 and in a more 

compact form in Figure (b). Note that each butterfly involves 

three complex multiplications, since WN0 = 1, and 12 

complex additions. 

 

 

Figure 3:  Radix-4 butterfly 

By performing the additions in two steps, it is possible to 

reduce the number of additions per butterfly from 12 to 8. This 

can be accomplished by expressing the matrix of the linear 

transformation mentioned previously as a product of two 

matrices as follows 

 

 

 

3.3.1   256-point Radix-4 (FFT) algorithm in MxP 

Due to the 4x4 matrix multiplication capability of MxP, we 

chose the decimation-in-frequency (DIF) FFT algorithm. The 

FFT implementation on MxP involves one 4x4 matrix 

multiplication and one complex multiplication in first  three 

stages and a single 4x4 matrix multiplication in the fourth 

stage butterfly. The rest of the cycles are for data load/ store. 

 

Once per FFT: 

 

       Load 4x4 transformatiom matrix coefficients (16 hwords) 

       Load four matrix configuration values (4 dwords) 

 

Same for first three stages: once per Butterfly: 
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       Load four complex inputs - real and imaginary part (8 

hwords) 

       Perform complex transformation (4x4 * 4x2) 

       Load 1x4 complex twiddle factors (8 hwords) and 1x4 

negative  

       of the imaginary part (4 hwords) 

       Perform multiplication with twiddle factors 

       Store four complex outputs - real and imaginary (8 

hwords) 

 

Once per Butterfly: 

 

       Load four complex inputs - real and imaginary part (8 

hwords) 

       Perform complex transformation (4x4 * 4x2) 

       Store four complex outputs - real and imaginary (8 

hwords) 

 

 

4. PERFORMANCE EVALUATION OF MxP 

 

In this section, we provide the results of performance analysis 

of MxP for 8x8 DCT matrix multiplications in terms of 

machine cycles. We also provide performance comparison 

results of MxP with other widely used DSPs from Texas 

Instruments comparisons in Figures. 4 and 5. Table 1 gives the 

MxP cycle count with other widely used DSPs such as the 

Texas Instruments (TI) TMS320c55x and TMS320c64x 

 

Process MxP TMS320c

64  

TMS320c

55 

8x8 Multiply 146 283 

 

464 

8x8 DCT 125 126 238 

 

Table 1: Machine cycles 

 

From these examples, it is evident that in terms of machine 

cycles the MxP performs quite well relative to the 

TMS320c55x. For matrix multiplication and filtering, the MxP 

cycle count is lower than that of TMS320c64x. On the other 

hand for the DIF DCT, both the MxP and the TMS320c64x 

have comparable performance. Table 2 and Figure 5 shows 

code size comparisons for the DCT and the MAD 

computations. It can be seen that the MxP performs these tasks 

with reduced code size. Reduced code size results in 

significant reduction of on chip program memory 

 

Process MxP TMS320c

64  

TMS320c

55 

8x8 Multiply 84  416  215 

8x8 DCT 88  976  480 

 

Table 2: Code size in bytes 

 

 

 

Figure 4 Machine cycle comparison 

 

 

 

Figure 5: Code size comparison 

 

CONCLUSION 

 

In this paper, we presented and evaluated the MxP 

architecture. Comparative results were given for select signal 

and video processing applications. In particular, the MxP 

performance was compared against the widely used TI DSPs, 

namely the TMS320c64x and the TMS320c55x. Comparison 
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results in terms of machine cycles and code size favored the 

MxP™. The code size for the MxP proved to be more compact 

than the other DSPs resulting in reduced instruction fetches. 

The reduction in instruction fetches and the lower overall 

clock can be exploited for low power realizations on the MxP. 

 

REFERENCES 

 

[1] M. Ghanbari, Standard codecs: Image compression to 

advanced video coding, The IEE Press, London, 2003. 

 

[2] M. Vrhel, E. Saber, H. Trussell, “Color Image Generation 

& Display Technologies”, IEEE SP Mag., Jan 2005. 

 

[3] A.S. Spanias, "Speech Coding: A Tutorial Review," Proc. 

IEEE, Vol. 82, No. 10, pp. 1441-1582, Oct. 1994. 

 

[4] T. Painter and A. Spanias, “Perceptual Coding of Digital 

Audio,” Proc. IEEE, pp.451-513, Vol. 88, No.4, Apr 2000. 

 

[5] A. Spanias, T. Painter, V. Atti, Audio Signal Processing 

and Coding, Wiley, ISBN:0-471-79147-4, March 2007. 

 

[6] 2.ITU-T Draft Recommendation G.729, “Coding of speech 

at 8Kbps using the Conjugate Structure Algebraic Code 

Excited Linear – Prediction (CS-ACELP)”. 

 [7] R.M. Rao and A.S. Bopardikar, Wavelet Transforms: 

Introduction to Theory and Applications, Addison-Wesley 

Longman, Reading, MA, 1998. 

 

[8] A. Spanias, M. Deisher, P. Loizou+, G. Lim+, B. Mears, 

"A New Highly Integrated Architecture for Speech Processing 

and 

Communication Applications," ITJ, pp. 41-56, Spring 1994. 

[9] SPRU422H, TMS320c55x DSP Programmer‟s Reference, 

October 2004. 

[10] SPRU565H, TMS320c64x DSP Programmer‟s 

Reference, October 2003. 

 

[11] SPRU037C, TMS320c55x Image, Video processing 

 

[12] MxP Architecture, Rev 0.1.0, Doc. No. GS\ 

Programmer‟s Reference, January 2004. EN\PR\ 

DE\2004\020, Aug. 2004, G4 Matrix Tech. Inc. (formerly 

GemTech Solutions (P)), Thiruvananthapuram, India. 

 

[13] Apparatus and method for Matrix Data Processing, 

G.Nair, US Patent No. 6,944,747, Sept. 13, 2005 

 

 

 


